Panasonic INDUSTRY

Order Panasonic Now! https://www.ramcoi.com/mstore/panasonic

NEW
Amplifier Built-in / DC 3-wire Type
Cylindrical Inductive Proximity Sensor
c ϵ
GX-300 series
Recognition
(11)
Listing

Standard Type Cylindrical Inductive Proximity Sensors with Improved Basic Performance

Standard type cylindrical inductive proximity sensors with improved basic performance GX-300 series

Improved basic performance

Response frequency of $5 \mathbf{k H z}$ * allows the use of high-speed application

The GX-303S boasts a response frequency of 5 kHz and realizes high speed response.
The response frequency of other sensor models has been also improved by up to 4 times as compared to our conventional models.
Since the GX-300 series responds quickly to sensor ON/OFF judgement, it works well with a high-speed application and contributes to the reduction of equipment cycle time.

Typical examples (Shielded type)		$\left(\begin{array}{c} \text { Significant } \\ \text { improvement } \\ \text { over } \\ \text { conventional } \\ \text { models! } \end{array}\right)$	
Type	Response frequency of our conventional mode		Response frequency of GX-300 standard sensing range type
$\varnothing 3 \mathrm{~mm}$ ø0.118 in	-		5 kHz (GX-303S)
$\begin{gathered} \varnothing 4 \mathrm{~mm} \Phi 0.157 \mathrm{in} \\ \varnothing \text { Conventional model: } \\ \varnothing 3.8 / 84.4 \mathrm{~mm} \times 0.150 / \varnothing 0.173 \mathrm{in} \end{gathered}$	1 kHz	4 times	4 kHz (GX-304S)
$\varnothing 5.4 \mathrm{~mm}$ ø0.213 in	1.5 kHz	2.7 times	4 kHz (GX-305S)
M5 threaded	1 kHz	4 times	4 kHz (GX-305M)
M8 threaded	1 kHz	2 times	2 kHz (GX-308M)
M12 threaded	450 Hz	3.3 times	1,500 Hz (GX-312M)
M18 threaded	300 Hz	2 times	600 Hz (GX-318M)

What is response frequency?

A rotating plate having the standard sensing object pasted at constant intervals is placed in front of the proximity sensor. The plate is rotated while observing the sensing output. The maximum number of times per second at which sensing can be done, for which the corresponding sensing output can be obtained, is the maximum response frequency.

In other words, the larger the numeric value of the response frequency is, the faster the response is.
Example) Conversion of response frequency to response speed $1 \mathrm{kHz} \rightarrow 1$-ms cycle $\quad 5 \mathrm{kHz} \rightarrow 0.2-\mathrm{ms}$ cycle

a: Side length of standard sensing object

Enhanced a degree of the detection margin

Sensing over long distance

The M8 / M12 / M18 / M30 threaded type sensors are available in standard sensing range type or long sensing range type ("K" at the end of model No.).
The long sensing range means reliable detection with plenty of performance margin to spare.

Sensing range comparison

Minimum risk of collision or sensing error even if the distance to the sensing object changes due to equipment vibration

If the distance to the sensing object changes due to equipment vibration or time-related degradation, the sensor may generate sensing errors including sensing failure in some cases.
If the sensor is set up very close to the sensing object for the purpose of preventing detecting failures, the sensor may contact the sensing object and cause damage.

The long sensing range models facilitate the sensor setup for reliable sensing since they detect the sensing object at a long distance.

The distance to the dog becomes longer due to equipment vibration and the sensor may fail to detect the sensing object.

Conventional model

Reduced variation in maximum operation distance

With the GX-300 series, variation in maximum operation distance is kept within $\pm 10 \%$ * $\pm 15 \%$ in the case of the previous GX series.

Variation in the maximum operation distance of the $\varnothing 3 / \varnothing 4 / \varnothing 5.4 \mathrm{~mm} \varnothing 0.118 / \varnothing 0.157 / \varnothing 0.213 \mathrm{in}, \mathrm{M} 5 / \mathrm{M} 8$ threaded type models has been also reduced as compared to the conventional models.

Improved usability

Indicator visible 360 degrees

The indicator is conveniently visible from any direction, thus facilitating installation check and operation confirmation.

Further reduction of the size of small-diameter type sensors for easier embedment

The small-diameter type sensors are 25.1 mm 0.988 in in depth while the conventional models measured 30 mm 1.181 in . (GX-303S measures 27.1 mm 1.067 in in depth.)
The reduced unit size enables the installation of the sensor in a smaller space.

$$
\begin{aligned}
& \text { Comparison of depth dimensions } \\
& \text { of small-diameter type sensors }
\end{aligned}
$$

Type	Our conventional model	GX-300
ø3.0 mm ø0.118 in	-	27.1 mm 1.067 in
$ø 3.8$ mm ø0.150 in	30 mm 1.181 in	-
$\varnothing 4.0$ mm ø0.157 in	-	25.1 mm 0.988 in
$\varnothing 4.4 \mathrm{~mm}$ ø0.173 in	30 mm 1.181 in	-
$\varnothing 5.4 \mathrm{~mm}$ ø0.213 in	30 mm 1.181 in	25.1 mm 0.988 in
M5 thread	30 mm 1.181 in Threaded section: 18 mm 0.709 in	25.1 mm 0.988 in Threaded section: 15.1 mm 0.594 in

Extensive model lineup

The GX-300 series includes 310 different sensor models.
We offer various types of sensor models such as the cable type (cable length: 2 m 6.562 ft or 5 m 16.404 ft), connector type and pigtailed type. Furthermore, we can supply bending-resistant cable type models (cable length: 2 m 6.562 ft or 5 m 16.404 ft), which are suitable for installation on moving parts.
(For the detail of our model lineup, see page 6 and following pages.)

Suitable for loT applications

IO-Link compatibility

Evolution from ON/OFF judgment sensors to sensors capable of transmitting the detection level and sensor status information

* Only the M8 / M12 / M18 / M30 threaded type, PNP output, normally open type models are compatible with IO-Link.

What is "IO-Link"?

IO-Link
IO-Link is an open communication technology according to IEC 61131-9 for the 1:1 bidirectional communication between the IO-Link device (sensor or actuator) and the IO-Link master.

- IO-Link compatible sensors can also be used as ordinary sensors (PNP output type).

- When IO-Link compatible sensors are connected to the IO-Link master, they can transmit not only ON/OFF signal but also sensor level information and operation mode switching information in both ways. So, the sensors can be utilized for the visualization of manufacturing operations or for the incorporation of loT technology.
-Typical field network

CC-Línk IE Field	CC-Link	To PLC
EtherCAT.	Devicelvet	
EtheriNet/IP	ModCus TCP	

*CC-Link IE Field and CC-Link are trademarks of Mitsubishi Electric Corporation, and are controlled by the CC-Link Partner Association. DeviceNet and EtherNet/IP are registered trademarks of ODVA (Open DeviceNet Vender Association, Inc.).
EtherCAT is a registered trademark of Beckhoff Automation GmbH. Modbus is a registered trademark of Schneider Automation, Inc.

IO-Link usage example 1

> Using the process data, the sensor transmits the detection level (8 bits) to the host device over IO-Link.

Transmission of ON/OFF signal to host device such as PLC

Model No.

DC 3-wire type (Small-diameter, shielded type)

		Appearance (mm in)	Sensing range (Note)	Model No.	Output	Output operation
				GX-303S-A-N	NPN open-collector transistor	Normally open
				GX-303S-B-N		Normally closed
				GX-303S-A-P	PNP open-collector transistor	Normally open
				GX-303S-B-P		Normally closed
			1.2 mm 0.047 in (0 to 0.84 mm 0 to 0.033 in)	GX-304S-A-N	NPN open-collector transistor	Normally open
				GX-304S-B-N		Normally closed
				GX-304S-A-P	PNP open-collector transistor	Normally open
				GX-304S-B-P		Normally closed
			1 mm 0.039 in (0 to 0.7 mm 0 to 0.028 in)	GX-305S-A-N	NPN open-collector transistor	Normally open
				GX-305S-B-N		Normally closed
				GX-305S-A-P	PNP open-collector transistor	Normally open
				GX-305S-B-P		Normally closed
			1.2 mm 0.047 in (0 to 0.84 mm 0 to 0.033 in)	GX-305M-A-N	NPN open-collector transistor	Normally open
				GX-305M-B-N		Normally closed
				GX-305M-A-P		Normally open
				GX-305M-B-P	transistor	Normally closed

Note: The maximum operation distance stands for the maximum distance for which the sensor can detect the standard sensing object.
The stable sensing range stands for the sensing range for which the sensor can stably detect the standard sensing object even if there is an ambient temperature drift and/or supply voltage fluctuation.

DC 3-wire type (Shielded type)

Notes: 1) The maximum operation distance stands for the maximum distance for which the sensor can detect the standard sensing object.
The stable sensing range stands for the sensing range for which the sensor can stably detect the standard sensing object even if there is an ambient temperature drift and/or supply voltage fluctuation.
2) The PNP output, normally open type models [GX-3■M(K)-A-P(-ם)] are compatible with IO-Link.

The PNP output, normally closed type models and all NPN output type models do not support IO-Link.

DC 3-wire type (Non-shielded type)

Notes: 1) The maximum operation distance stands for the maximum distance for which the sensor can detect the standard sensing object. The stable sensing range stands for the sensing range for which the sensor can stably detect the standard sensing object even if there is an ambient temperature drift and/or supply voltage fluctuation.
2) The PNP output, normally open type models $[$ GX-3 $\square \mathbf{M L}(\mathbf{K})-\mathrm{A}-\mathrm{P}(-\square)]$ are compatible with IO-Link.

The PNP output, normally closed type models and all NPN output type models do not support IO-Link.

5 m 16.404 ft cable length type

5 m 16.404 ft cable length type (standard: 2 m 6.562 ft) is also available. When ordering this type, suffix "-C5" to the model No. (e.g.) 5 m 16.404 ft cable length type of GX-303S-A-N is "GX-303S-A-N-C5".

Bending-resistant cable type ($2 \mathrm{~m} 6.562 \mathrm{ft} / 5 \mathrm{~m} 16.404 \mathrm{ft}$ cable length)

The shielded, non-threaded type sensors ($\varnothing 4 \mathrm{~mm} \varnothing 0.157 \mathrm{in} / \varnothing 5.4 \mathrm{~mm} \varnothing 0.213 \mathrm{in}$) and threaded type sensors (M5 / M8) are available with a bending-resistant cable (cable length: 2 m 6.562 ft or 5 m 16.404 ft). (Note that the $\varnothing 5.4 \mathrm{~mm} \varnothing 0.213 \mathrm{in}$ size, normally closed type sensors are not available with a 5 -m-long bending-resistant cable.)
When ordering bending-resistant 2 m 6.562 ft cable type, suffix "-R" to the model No. When ordering bending-resistant 5 m 16.404 ft cable type, suffix "-R5" to the model No.
(e.g.) Bending-resistant 2 m 6.562 ft cable type of GX-304S-A-N is "GX-304S-A-N-R".
(e.g.) Bending-resistant 5 m 16.404 ft cable type of GX-304S-A-N is "GX-304S-A-N-R5".

Pigtailed type

The threaded type sensors (M8 / M12 / M18 / M30) are available in the pigtailed type. (Connector: M12)
When ordering this type, suffix "-J" to the model No.
(e.g.) Pigtailed type of GX-308M-A-N is "GX-308M-A-N-J".

Connector type

The threaded type sensors (M12 / M18 / M30) are available in the connector type. When ordering this type, suffix "-Z" to the model No (e.g.) Connector type of GX-312M-A-N is "GX-312M-A-N-Z".

- List of connection systems

Type		5 m 16.404 ft cable length ("-C5" at the end of model No.)	Bending-resistant 2 m 6.562 ft cable ("-R" at the end of model No.)	Bending-resistant 5 m 16.404 ft cable ("-R5" at the end of model No.)	Pigtailed type ("-J" at the end of model No.) (Note)	Connector type ("-Z" at the end of model No.)
Smalldiameter, shielded type	$\begin{aligned} & \varnothing 3.0 \mathrm{~mm} \\ & \varnothing 0.118 \mathrm{in} \end{aligned}$	Available	-	-	-	-
	$\begin{aligned} & \varnothing 4.0 \mathrm{~mm} \\ & \varnothing 0.157 \mathrm{in} \end{aligned}$	Available	Available	Available	-	-
	$\begin{aligned} & \varnothing 5.4 \mathrm{~mm} \\ & \varnothing 0.213 \mathrm{in} \end{aligned}$	Available	Available	Available *Excluding normally closed type	-	-
	M5	Available	Available	Available	-	-
Shielded type	M8	Available	Available	Available	Available	-
	M12	Available	-	-	Available	Available
	M18	Available	-	-	Available	Available
	M30	Available	-	-	Available	Available
Non-shielded type	M8	Available	-	-	Available	-
	M12	Available	-	-	Available	Available
	M18	Available	-	-	Available	Available
	M30	Available	-	-	Available	Available

Note: Please purchase mating cables separately when using pigtailed type models.

- Mating cable

Model No.	Description	
CN-24S-C2	Length: 2 m 6.562 ft	AWG20 4-core cable with M12 Smartclick connector on one end Cable outside diameter: $\varnothing 6 \mathrm{~mm} \varnothing 0.236$ in
CN-24S-C5	Length: 5 m 16.404 ft	

Note: Smartclick $^{\text {is a trademark of OMRON Corporation. }}$

Ramco Innovations

SPECIFICATIONS

DC 3-wire type (Small-diameter, shielded type)

			Small-diameter, shielded type			
			Non-threaded type			Threaded type
	Model No	Normally open	GX-303S-A-■	GX-304S-A-■	GX-305S-A-ם	GX-305M-A-■
	(Note 2)	Normally closed	GX-303S-B-■	GX-304S-B-■	GX-305S-B-■	GX-305M-B-■
Regulatory compliance			CE Marking (EMC Directive, RoHS Directive), UL Recognition Certification (excluding bending-resistant cable type)			
Max. operation distance (Note 3)			$0.8 \mathrm{~mm} 0.031 \mathrm{in} \pm 10$ \%	$1.2 \mathrm{~mm} 0.047 \mathrm{in} \pm 10$ \%	$1.0 \mathrm{~mm} 0.039 \mathrm{in} \pm 10$ \%	$1.2 \mathrm{~mm} 0.047 \mathrm{in} \pm 10$ \%
Stable sensing range (Note 3)			0 to 0.56 mm 0 to 0.022 in	0 to 0.84 mm 0 to 0.033 in	0 to 0.7 mm 0 to 0.028 in	0 to 0.84 mm 0 to 0.033 in
Standard sensing object			Iron sheet $3 \times 3 \times t 1 \mathrm{~mm}$ $0.118 \times 0.118 \times t 0.039$ in	Iron sheet $4 \times 4 \times t 1 \mathrm{~mm}$ $0.157 \times 0.157 \times t 0.039$ in	$\begin{aligned} & \text { Iron sheet } 5.4 \times 5.4 \times \mathrm{t} 1 \mathrm{~mm} \\ & 0.213 \times 0.213 \times \mathrm{t} 0.039 \mathrm{in} \end{aligned}$	$\begin{aligned} & \text { Iron sheet } 4 \times 4 \times t 1 \mathrm{~mm} \\ & 0.157 \times 0.157 \times t 0.039 \text { in } \end{aligned}$
Hysteresis			15% or less of operation distance (with standard sensing object)			
Supply voltage (Note 4)			10 to 30 V DC [including 10% ripple (p-p)]			
Current consumption			10 mA or less			
Output (Note 5)			<NPN output type> NPN open-collector transistor - Maximum sink current: 100 mA or less (50 mA or less for GX-303S) - Applied voltage: 30 V DC or less (between output to 0 V) - Residual voltage: 2 V or less (Note 6) (at max. sink current)		<PNP output type> PNP open-collector transistor - Maximum source current: 100 mA or less (50 mA or less for GX-303S) - Applied voltage: 30 V DC or less (between output to +V) - Residual voltage: 2 V or less (Note 6) (at max. source current)	
Short-circuit protection			Incorporated			
Response frequency (Note 7)			5 kHz	4 kHz		
Operation indicator			Orange LED (lights up when the output is ON)			
Pollution degree			3			
Altitude			2,000 m 6561.68 ft or less			
	Protection		IP67 (IEC)			
	Ambient temperature		-25 to $+70{ }^{\circ} \mathrm{C}-13$ to $+158{ }^{\circ} \mathrm{F}$, Storage: -25 to $+70^{\circ} \mathrm{C}-13$ to $+158{ }^{\circ} \mathrm{F}$ (No condensation or icing allowed)			
	Ambient humidity		35 to 95% RH, Storage: 35 to 95 \% RH (No condensation allowed)			
	Voltage withstandability		500 V AC for one min. between all supply terminals connected together and enclosure			
	Insulation resistance		$50 \mathrm{M} \Omega$ or more, with 500 V DC megger between all supply terminals connected together and enclosure			
	Vibration resistance		10 to 55 Hz frequency, 1.5 mm 0.059 in double amplitude in X, Y and Z directions for two hours each			
	Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2}$ acceleration in X, Y and Z directions ten times each			
Sensing range variation		Temperature characteristics	Within $\pm 15 \%$ of sensing range at $+23^{\circ} \mathrm{C}+73{ }^{\circ} \mathrm{F}$ in ambient temperature range			
		Voltage characteristics	Within ± 2.5 \% for ± 15 \% fluctuation of the rated supply voltage			
Material			Enclosure: Stainless steel (SUS303) [Brass (Nickel plated) for GX-305S] Sensing part: Heat-resistant ABS, Cable: Polyvinyl chloride (PVC)			
Mating cable			$0.09 \mathrm{~mm}^{2} 3$-core ø 2.4 mm $\varnothing 0.094$ in cabtyre cable, 2 m 6.562 ft long	$0.14 \mathrm{~mm}^{2} 3$-core ø2.9 mm ø0.114 in cabtyre cable, $2 \mathrm{~m} 6.562 \mathrm{ft} \mathrm{long} \mathrm{(Note} \mathrm{8)}$		
Weight (Note 6)			Net weight: 20 g approx. Gross weight: 40 g approx.	Net weight: 25 g approx. Gross weight: 50 g approx.	Net weight: 30 g approx. Gross weight: 50 g approx.	
Accessories			-			Nut: 2 pcs., Toothed lock washer: 1 pc.

Notes: 1) Where measurement conditions have not been specified precisely, the conditions used were an ambient temperature of $+23^{\circ} \mathrm{C}+73^{\circ} \mathrm{F}$.
2) The sensors with " N " indicated instead of \square in their model Nos. are NPN output type. The sensors with "P" are PNP output type.
3) The maximum operation distance stands for the maximum distance for which the sensor can detect the standard sensing object.

The stable sensing range stands for the sensing range for which the sensor can stably detect the standard sensing object even if there is an ambient temperature drift and/or supply voltage fluctuation.
4) When used at a power of 12 V , the product is less susceptible to the effects of internal self-heat generation and therefore a more stable repeat accuracy can be obtained.
5) When the output is 20 mA or less, the product is less susceptible to the effects of internal self-heat generation and therefore a more stable repeat accuracy can be obtained.
6) When the cable length is 2 m 6.562 ft .
7) The response frequency is an average value.
8) The bending-resistant cable type models come with a $0.15 \mathrm{~mm}^{2} 3$-core bending-resistant $\varnothing 2.9 \mathrm{~mm} \varnothing 0.114$ in cabtyre cable.

SPECIFICATIONS

DC 3-wire type (Shielded type)

Notes: 1) Where measurement conditions have not been specified precisely, the conditions used were an ambient temperature of $+23^{\circ} \mathrm{C}+73^{\circ} \mathrm{F}$.
2) The sensors with " \mathbf{N} " indicated instead of \square in their model No. are NPN output type. The sensors with "P" are PNP output type.
3) The maximum operation distance stands for the maximum distance for which the sensor can detect the standard sensing object.

The stable sensing range stands for the sensing range for which the sensor can stably detect the standard sensing object even if there is an ambient temperature drift and/or supply voltage fluctuation.
4) PNP output, normally closed type models and all NPN output models do not support IO-Link.
5) When the cable length is 2 m 6.562 ft .
6) The response frequency is an average value.
7) The bending-resistant cable type comes with a $0.2 \mathrm{~mm}^{2} 3$-core bending-resistant $\varnothing 4 \mathrm{~mm} \varnothing 0.157$ in cabtyre cable.
8) The bending-resistant cable type comes with a $0.2 \mathrm{~mm}^{2} 3$-core bending-resistant $\varnothing 6 \mathrm{~mm} \varnothing 0.236$ in cabtyre cable.

SPECIFICATIONS

DC 3-wire type (Non-shielded type)

pe		Non-shielded type							
		Threaded type							
		Standard sensing range				Long sensing range			
	Normally open	GX-308ML-A-■	GX-312ML-A-a	GX-318ML-A-ם	GX-330ML-A-ם	GX-308MLK-A-ם	GX-312MLK-A-व	GX-318MLK-A-व	GX-330MLK-A-व
Item (Note 2	Normally closed	GX-308ML-B-ם	GX-312ML-B-■	GX-318ML-B-■	GX-330ML-B-■	GX-308MLK-B-■	GX-312MLK-B-■	GX-318MLK-B-ם	GX-330MLK-B-■
Regulatory compliance		CE Marking (EMC Directive, RoHS Directive), UL/c-UL Listing Certification							
Max. operation distance (Note 3)		$\begin{array}{\|c\|} \hline 2 \mathrm{~mm} \\ 0.079 \mathrm{in} \pm 10 \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \mathrm{~mm} \\ 0.197 \mathrm{in} \pm 10 \% \\ \hline \end{array}$	$\begin{gathered} 10 \mathrm{~mm} \\ 0.394 \mathrm{in} \pm 10 \% \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 18 \mathrm{~mm} \\ 0.709 \mathrm{in} \pm 10 \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4 \mathrm{~mm} \\ 0.157 \mathrm{in} \pm 10 \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8 \mathrm{~mm} \\ 0.315 \mathrm{in} \pm 10 \% \\ \hline \end{array}$	$\begin{gathered} 16 \mathrm{~mm} \\ 0.630 \mathrm{in} \pm 10 \% \\ \hline \end{gathered}$	$\begin{gathered} 30 \mathrm{~mm} \\ 1.181 \mathrm{in} \pm 10 \% \\ \hline \end{gathered}$
Stable sensing range(Note 3)		0 to 1.6 mm 0 to 0.063 in	0 to 4 mm 0 to 0.157 in	$\begin{gathered} 0 \text { to } 8 \mathrm{~mm} \\ 0 \text { to } 0.315 \text { in } \end{gathered}$	0 to 14.4 mm 0 to 0.567 in	$\begin{aligned} & 0 \text { to } 3.2 \mathrm{~mm} \\ & 0 \text { to } 0.126 \text { in } \end{aligned}$	0 to 6.4 mm 0 to 0.252 in	0 to 12.8 mm 0 to 0.504 in	0 to 24 mm 0 to 0.945 in
Standard sensing object		$\begin{gathered} \text { Iron sheet } \\ 8 \times 8 \times \mathrm{t} 1 \mathrm{~mm} \\ 0.315 \times 0.315 \\ \times \mathrm{t} 0.039 \mathrm{in} \end{gathered}$	$\begin{array}{c\|} \text { Iron sheet } \\ 15 \times 15 \times \mathrm{t} 1 \mathrm{~mm} \\ 0.591 \times 0.591 \\ \times \mathrm{t} 0.039 \mathrm{in} \end{array}$	$\begin{gathered} \text { Iron sheet } \\ 30 \times 30 \times \mathrm{t} 1 \mathrm{~mm} \\ 1.181 \times 1.181 \\ \times \mathrm{t} 0.039 \mathrm{in} \end{gathered}$	$\begin{gathered} \text { Iron sheet } \\ 54 \times 54 \times \mathrm{t} 1 \mathrm{~mm} \\ 2.126 \times 2.126 \\ \times t 0.039 \text { in } \end{gathered}$	$\begin{gathered} \text { Iron sheet } \\ 12 \times 12 \times t 1 \mathrm{~mm} \\ 0.472 \times 0.472 \\ \times t 0.039 \mathrm{in} \end{gathered}$	$\begin{gathered} \text { Iron sheet } \\ 24 \times 24 \times \mathrm{t} 1 \mathrm{~mm} \\ 0.945 \times 0.945 \\ \times \mathrm{t} 0.039 \mathrm{in} \end{gathered}$	$\begin{gathered} \text { Iron sheet } \\ 48 \times 48 \times \mathrm{t} 1 \mathrm{~mm} \\ 1.89 \times 1.89 \times \\ \mathrm{t} 0.039 \mathrm{in} \end{gathered}$	$\begin{gathered} \text { Iron sheet } \\ 90 \times 90 \times t 1 \mathrm{~mm} \\ 3.543 \times 3.543 \\ \times \mathrm{t} 0.039 \mathrm{in} \end{gathered}$
Hysteresis		10% or less of operation distance (with standard sensing object)				15% or less of operation distance (with standard sensing object)			
Supply voltage		10 to 30 V DC [including 10% ripple (p-p)], Class 2							
Current consumption		16 mA or less							
Output (C/Q) (Note 4)	IO-Link communication	IO-Link Specification Ver1.1							
	Baud rate	COM3 (230.4 kbps)							
	Process data	PD size: 2 bytes, OD size: 1 byte (M-sequence type: TYPE2_2)							
	Minimum cycle time	0.4 ms							
	Vendor ID	834 (0x342)							
	Device ID	GX-308■: 0x70000, GX-312■: 0x70001, GX-318■: 0x70002, GX-330■: 0x70003							
Output		<NPN output type> NPN open-collector transistor - Maximum sink current: 200 mA or less [GX-308ML(K)-a: 200 mA or less (-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$), 100 mA or less (+70 to $+85^{\circ} \mathrm{C}+158$ to $+185^{\circ} \mathrm{F}$)] - Applied voltage: 30 V DC or less (between output to 0 V) - Residual voltage: 2 V or less (Note 5) (at sink current 200 mA or less)				<PNP output type> PNP open-collector transistor - Maximum source current: 200 mA or less [GX-308ML(K)-ם: 200 mA or less (-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$), 100 mA or less (+70 to $+85^{\circ} \mathrm{C}+158$ to $+185^{\circ} \mathrm{F}$)] - Applied voltage: 30 V DC or less (between output to +V) - Residual voltage: 2 V or less (Note 5) (at source current 200 mA or less)			
Short-circuit protection		Incorporated							
Response frequency (Note 6)		1,000 Hz	800 Hz	400 Hz	100 Hz	$1,000 \mathrm{~Hz}$	800 Hz	400 Hz	100 Hz
Operation indicator		Standard I/O mode (SIO mode): Operation indicator (orange, ON), Communication indicator (green, OFF) IO-LINK communication mode (COM mode): Operation indicator (orange, ON), Communication indicator [green, flashing (1-sec intervals)]							
Pollution degree		(3							
Altitude		2,000 m 6561.68 ft or less							
Protection		IP67 (IEC), IP69K, IP67G [IP67 (IEC), IP69K for connector type]							
Ambient temperature		-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$, Storage: -45 to $+85^{\circ} \mathrm{C}-49$ to $+185^{\circ} \mathrm{F}$ (No condensation or icing allowed) (UL temperature rating for relay connector type: -25 to $+70^{\circ} \mathrm{C}-13$ to $+158^{\circ} \mathrm{F}$)							
Ambient humidity		35 to 95 \% RH, Storage: 35 to 95% RH (No condensation allowed)							
Voltage withstandability		$1,000 \mathrm{~V} \mathrm{AC}$ for one min. between all supply terminals connected together and enclosure							
Insulation resistance		$50 \mathrm{M} \Omega$ or more, with 500 V DC megger between all supply terminals connected together and enclosure							
Vibration resistance		10 to 55 Hz frequency, 1.5 mm 0.059 in double amplitude in X, Y and Z directions for two hours each							
Shock resistance		$1,000 \mathrm{~m} / \mathrm{s}^{2}\left(\mathbf{G X} \mathbf{- 3 0 8 M L}(\mathbf{K})-\square: 500 \mathrm{~m} / \mathrm{s}^{2}\right)$ acceleration in X, Y and Z directions ten times each							
Sensing range variation	Temperature characteristics	Within $\pm 15 \%$ of sensing range at $+23^{\circ} \mathrm{C}+73^{\circ} \mathrm{F}$ in ambient temperature range Within $\pm 10 \%$ of sensing range at $+23^{\circ} \mathrm{C}+73^{\circ} \mathrm{F}$ in temperature range of -25 to $+70^{\circ} \mathrm{C}-13$ to $+158{ }^{\circ} \mathrm{F}$							
	Voltage characteristics	Within $\pm 1 \%$ for ± 15 \% fluctuation of the rated supply voltage							
Material		Enclosure: Nickel-plated brass [stainless steel (SUS303) for GX-308ML(K)-ם], Sensing part: Polybutylene terephthalate (PBT), Cable: Polyvinyl chloride (PVC)							
Mating cable		$0.2 \mathrm{~mm}^{2} 3$-core oil resistant $\varnothing 4 \mathrm{~mm} \varnothing 0.157$ in cabtyre cable, 2 m 6.562 ft long (Note 7)		$0.2 \mathrm{~mm}^{2} 3$-core oil resistant $\varnothing 6 \mathrm{~mm} \varnothing 0.236$ in cabtyre cable, 2 m 6.562 ft long (Note 8)		$0.2 \mathrm{~mm}^{2} 3$-core oil resistant $\varnothing 4 \mathrm{~mm} \varnothing 0.157$ in cabtyre cable, 2 m 6.562 ft long (Note 7)		$0.2 \mathrm{~mm}^{2} 3$-core oil resistant $\varnothing 6 \mathrm{~mm} \varnothing 0.236$ in cabtyre cable, 2 m 6.562 ft long (Note 8)	
Weight	Cable type (Note 5)	Net weight: 55 g approx. Gross weight: 80 g approx.	Net weight: 70 g approx. Gross weight: 95 g approx.	Net weight: 140 g approx. Gross weight: 170 g approx.	Net weight: 200 g approx. Gross weight: 230 g approx.	Net weight: 55 g approx. Gross weight: 80 g approx.	Net weight: 70 g approx. Gross weight: 95 g approx.	Net weight: 140 g approx. Gross weight: 170 g approx.	Net weight: 240 g approx. Gross weight: 280 g approx.
	Pigtailed type	Net weight: 25 g approx. Gross weight: 55 g approx.	Net weight: 40 g approx. Gross weight: 65 g approx.	Net weight: 75 g approx. Gross weight: 100 g approx.	Net weight: 140 g approx. Gross weight: 160 g approx.	Net weight: 25 g approx. Gross weight: 55 g approx.	Net weight: 40 g approx. Gross weight: 65 g approx.	Net weight: 75 g approx. Gross weight: 100 g approx.	Net weight: 170 g approx. Gross weight: 220 g approx.
	Connector type	-	Net weight: 25 g approx. Gross weight: 55 g approx.	Net weight: 55 g approx. Gross weight: 80 g approx.	Net weight: 120 g approx. Gross weight: 150 g approx.	-	Net weight: 25 g approx. Gross weight: 55 g approx.	Net weight: 55 g approx. Gross weight: 80 g approx.	Net weight: 160 g approx. Gross weight: 200 g approx.
Accessories		Nut: 2 pcs., Toothed lock washer: 1 pc.							

Notes: 1) Where measurement conditions have not been specified precisely, the conditions used were an ambient temperature of $+23^{\circ} \mathrm{C}+73^{\circ} \mathrm{F}$.
2) The sensors with " \mathbf{N} " indicated instead of \square in their model No. are NPN output type. The sensors with "P" are PNP output type.
3) The maximum operation distance stands for the maximum distance for which the sensor can detect the standard sensing object.

The stable sensing range stands for the sensing range for which the sensor can stably detect the standard sensing object even if there is an ambient temperature drift and/or supply voltage fluctuation.
4) PNP output, normally closed type models and all NPN output models do not support IO-Link.
5) When the cable length is 2 m 6.562 ft .
6) The response frequency is an average value.
7) The bending-resistant cable type comes with a $0.2 \mathrm{~mm}^{2} 3$-core bending-resistant $\varnothing 4 \mathrm{~mm} \varnothing 0.157$ in cabtyre cable.
8) The bending-resistant cable type comes with a $0.2 \mathrm{~mm}^{2} 3$-core bending-resistant $\varnothing 6 \mathrm{~mm} \varnothing 0.236$ in cabtyre cable.

GX-3 S-ם-N GX-305M-ם-N

I/O circuit diagram

Note: Only GX-303S is 50 mA max.
Symbols... D: Reverse supply polarity protection diode
ZD: Surge absorption zener diode
Tr: NPN output transistor

Wiring diagram

GX-3пS-ם-P GX-305M-ם-P

I/O circuit diagram

Note: Only GX-303S is 50 mA max.
Symbols... D: Reverse supply polarity protection diode
ZD: Surge absorption zener diode
Tr: PNP output transistor

Wiring diagram

GX-3■M(K)-A-N GX-3■ML(K)-A-N

I/O circuit diagram

Note: In the case of the M8 threaded type:
200 mA max. (at -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$),
100 mA max. (at +70 to $+85^{\circ} \mathrm{C}+158$ to $+185^{\circ} \mathrm{F}$)
Symbols... D: Reverse supply polarity protection diode Zo: Surge absorption zener diode Tr: NPN output transistor

* Excluding M5 threaded type NPN output, Normally open type

Wiring diagram

Connector pin diagram
Pigtailed type
Connector type

GX-3■M(K)-B-N GX-3■ML(K)-B-N

I/O circuit diagram

Note: In the case of the M8 threaded type: 200 mA max. (at -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$), 100 mA max. (at +70 to $+85^{\circ} \mathrm{C}+158$ to $+185^{\circ} \mathrm{F}$)

Symbols... D: Reverse supply polarity protection diode ZD: Surge absorption zener diode
Tr: NPN output transistor

* Excluding M5 threaded type NPN output, Normally closed type

Wiring diagram

Connector pin diagram
Pigtailed type
Connector type

* Excluding M5 threaded type PNP output, Normally open type

Wiring diagram

Connector pin diagram

Pigtailed type
Connector type

GX-3■M(K)-B-P GX-3■ML(K)-B-P
I/O circuit diagram

Note: In the case of the M8 threaded type
200 mA max. (at -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$),
100 mA max. (at +70 to $+85^{\circ} \mathrm{C}+158$ to $+185^{\circ} \mathrm{F}$)
Symbols... D: Reverse supply polarity protection diode ZD: Surge absorption zener diode Tr: PNP output transistor

* Excluding M5 threaded type PNP output, Normally closed type

Wiring diagram

Connector pin diagram
Pigtailed type
Connector type

SENSING CHARACTERISTICS (TYPICAL)

All models

Sensing field

GX-303S-

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $3 \times$ $3 \times t 1 \mathrm{~mm} 0.118 \times 0.118 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between sensing range and repeatability

GX-304S-■ GX-305M-■

Correlation between sensing object size and sensing range

Correlation between sensing range and repeatability

GX-305S-■

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $5.4 \times$ $5.4 \times \mathrm{t} 1 \mathrm{~mm} 0.213 \times 0.213 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between sensing range and repeatability

GX-308M-■

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $8 \times$ $8 \times \mathrm{t} 1 \mathrm{~mm} 0.315 \times 0.315 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

GX-312M-■

Correlation between monitor output and sensing range

Correlation between monitor output and sensing range

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $12 \times$ $12 \times \mathrm{t} 1 \mathrm{~mm} 0.472 \times 0.472 \times$ $t 0.039 \mathrm{in}$), the sensing range shortens as shown in the left figure.

GX-318M-■

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $18 \times$ $18 \times \mathrm{t} 1 \mathrm{~mm} 0.709 \times 0.709 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

GX-330M- \square

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $30 \times$ $30 \times \mathrm{t} 1 \mathrm{~mm} 1.181 \times 1.181 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between monitor output and sensing range

SENSING CHARACTERISTICS (TYPICAL)

GX-308MK-■

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $8 \times$ $8 \times \mathrm{t} 1 \mathrm{~mm} 0.315 \times 0.315 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between monitor output and sensing range

GX-312MK-

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $12 \times$ $12 \times \mathrm{t} 1 \mathrm{~mm} 0.472 \times 0.472 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

GX-318MK-ㅁ

Correlation between sensing object size and sensing range

Correlation between monitor output and sensing range

Correlation between monitor output and sensing range

GX-330MK-ㅁ

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $45 \times$ $45 \times \mathrm{t} 1 \mathrm{~mm} 1.772 \times 1.772 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between monitor output and sensing range

GX-308ML-■

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $8 \times$ $8 \times \mathrm{t} 1 \mathrm{~mm} 0.315 \times 0.315 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between monitor output and sensing range

GX-312ML-■

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $15 \times$ $15 \times \mathrm{t} 1 \mathrm{~mm} 0.591 \times 0.591 \times$ $t 0.039 \mathrm{in}$), the sensing range shortens as shown in the left figure.

GX-318ML-■

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $30 \times$ $30 \times \mathrm{t} 1 \mathrm{~mm} 1.181 \times 1.181 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between monitor output and sensing range

GX-330ML-■

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $54 \times$ $54 \times \mathrm{t} 1 \mathrm{~mm} 2.126 \times 2.126 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between monitor output and sensing range

SENSING CHARACTERISTICS (TYPICAL)

GX-308MLK-

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $12 \times$ $12 \times \mathrm{t} 1 \mathrm{~mm} 0.472 \times 0.472 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between monitor output and sensing range

GX-312MLK-■

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $24 \times$ $24 \times \mathrm{t} 1 \mathrm{~mm} 0.945 \times 0.945 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

GX-318MLK-ㅁ

Correlation between sensing object size and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $48 \times$ $48 \times \mathrm{t} 1 \mathrm{~mm} 1.890 \times 1.890 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between monitor output and sensing range

GX-330MLK-

Correlation between sensing object size and sensing range

Correlation between monitor output and sensing range

As the sensing object size becomes smaller than the standard size (iron sheet $90 \times$ $90 \times \mathrm{t} 1 \mathrm{~mm} 3.543 \times 3.543 \times$ t 0.039 in), the sensing range shortens as shown in the left figure.

Correlation between monitor output and sensing range

- This catalog is a guide to select a suitable product. Be sure to read instruction manual attached to the product prior to its use.

- Never use this product as a sensing device
for personnel protection.
- In case of using sensing devices for
personnel protection, use products which
meet laws and standards, such as OSHA,
ANSI or IEC etc., for personnel protection
applicable in each region or country.

Mounting

- The tightening torque should be under the value given below.

Installation using set screw

- Do not tighten the product mounting nuts with excessive force.

<Non-threaded type>

Installation using nut

- Do not tighten the nut with excessive force. Be sure to install the toothed locked washer.
- In the case of the M8 threaded type, the allowable strength differs depending on the distance from the tip of the head. The following table shows the allowable tightening strengths for section B and section C shown in the diagram. (Section B starts from the tip of the head and its dimension is indicated in the table. Section C includes the nut on the head side. Therefore, if the nut extends into section B even slightly, the strength of section B is applicable.)
- The following allowable tightening strengths are applicable when the washer is installed.

Mounting hole and nut dimensions

	Model No.	D (mm in)	E (mm in)
	GX-303S	$\begin{gathered} \varnothing 3.3^{+0.5} \\ \varnothing 0.130^{+0.0197} \end{gathered}$	-
Mounting hole	GX-304S	$\begin{gathered} \varnothing 4.2^{+0.5} \\ \varnothing 0.165^{0+0.097} \end{gathered}$	-
$\underset{-D \rightarrow 1}{ }$	GX-305S	$\begin{gathered} \varnothing 5.7^{+0.5} \\ \varnothing 0.224^{+0.0197} \end{gathered}$	-
Nut dimensions	GX-305M	$\begin{gathered} \varnothing 5.5^{+0.5} \\ \varnothing 0.217^{+0.0197} \end{gathered}$	-
	$\begin{aligned} & \text { GX-308M(K) } \\ & \text { GX-308ML(K) } \end{aligned}$	$\begin{gathered} \varnothing 8.5^{+0.5} \\ \varnothing 0.335^{+0.0197} \end{gathered}$	130.512
	$\begin{aligned} & \text { GX-312M(K) } \\ & \text { GX-312ML(K) } \end{aligned}$	$\begin{gathered} \varnothing 12.5_{0}^{+0.5} \\ \varnothing 0.492_{0}^{+0.0197} \\ \hline \end{gathered}$	170.669
	$\begin{aligned} & \text { GX-318M(K) } \\ & \text { GX-318ML(K) } \end{aligned}$	$\begin{gathered} \varnothing 18.5^{+0.5} \\ \varnothing 0.728^{+0.0197} \end{gathered}$	240.945
	$\begin{aligned} & \text { GX-330M(K) } \\ & \text { GX-330ML(K) } \end{aligned}$	$\begin{gathered} \varnothing 30.5^{+0.5} \\ \varnothing 1.201^{+0.0197} \end{gathered}$	361.417

Bending radius of lead-out cable section

Model No.	Bending radius R
GX-303S	7 mm 0.276 in or more
GX-304S	9 mm 0.354 in or more
GX-305S	
GX-305M	

Installing small-diameter sensor

- Please use the sensor after confirming the installation distance by following (a) and (b) with an actual detection object when you install.
(a) The detection distance receives the influence by the material of the detection object, thickness, shape, and the size. So, the detection object is brought close to the front side of the sensor and detection distance (S) is measured. For the effect of the material, see the graph, "Correlation between sensing object size and sensing range," (p.16).
(b) Please decide installation distance (Sa) with $S \times 70 \%$ or less after measuring sensing distance(S).
- Please install the sensor to come within the range of (Sa) when the detection object moves from vertical direction.
- Please install the sensor to pass within the range of (Sa) when the detection object moves from horizontal direction.
- When using the sensor, refer to the "Standard sensing object" specified in the specifications (p.10) and the graph, "Correlation between sensing object size and sensing range," (p.16).

Distance from surrounding metal

- As metal around the sensor may affect the sensing performance, pay attention to the following points.

Influence of surrounding metal

- The surrounding metal will affect the sensing performance. Keep the minimum distance specified in the table below.
- When mounting the sensor using a nut, use the nut and washer provided with the product.
- The type of the provided nut varies in different models. See the external dimensions diagrams (p.23~) for the detail of the shape.

Mounting method A (Using the provided nut)

Mounting method B (Embedded in the metal)

(Unit: mm in)

Model No. (Shielded type)	Mounting method A				Mounting method B				
	F	G	H	I	J	G	K	H	1
GX-303S	-	-	-	-	0	$\begin{gathered} \varnothing 3 \\ \varnothing 0.118 \end{gathered}$	0	$\begin{array}{\|c\|} \hline 3 \\ 0.118 \end{array}$	$\begin{gathered} \hline 8 \\ 0.315 \end{gathered}$
GX-304S	-		-		0	$\begin{gathered} \varnothing 4 \\ \varnothing 0.157 \\ \hline \end{gathered}$	0	$\begin{array}{\|c\|} \hline 5 \\ 0.197 \\ \hline \end{array}$	$\begin{gathered} 10 \\ 0.394 \\ \hline \end{gathered}$
GX-305S	-				0		0	$\begin{array}{\|c\|} \hline 3 \\ 0.118 \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & .315 \\ & \hline \end{aligned}$
GX-30	0	$\begin{array}{\|c\|} \hline \varnothing 5 \\ \varnothing 0.197 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 0.197 \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ 0.394 \\ \hline \end{array}$	0	$\begin{gathered} \varnothing 5 \\ \varnothing 0.197 \\ \hline \end{gathered}$	0	$\begin{array}{\|c\|} \hline 5 \\ 0.197 \\ \hline \end{array}$	$\begin{gathered} 10 \\ 0.394 \\ \hline \end{gathered}$
GX-308	0	$\begin{array}{\|c\|} \hline \varnothing 8 \\ \varnothing 0.315 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.5 \\ 0.177 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 12 \\ 0.472 \\ \hline \end{array}$	0	$\begin{gathered} \not \varnothing 8 \\ \varnothing 0.315 \\ \hline \end{gathered}$	0	$\begin{array}{\|c\|} \hline 4.5 \\ 0.177 \\ \hline \end{array}$	$\begin{gathered} 12 \\ 0.472 \\ \hline \end{gathered}$
GX-31	0	$\begin{array}{\|c} \hline \varnothing 12 \\ \varnothing 0.472 \\ \hline \end{array}$	$\begin{gathered} 8 \\ 0.315 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 18 \\ 0.709 \\ \hline \end{array}$	0		0	$\begin{array}{\|c\|} \hline 8 \\ 0.315 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 18 \\ 0.709 \\ \hline \end{array}$
GX-31	0	$\begin{gathered} \not \varnothing 18 \\ \varnothing 0.709 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 0.787 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 \\ 1.063 \\ \hline \end{gathered}$	0	$\begin{gathered} \hline \varnothing 18 \\ \varnothing 0.709 \\ \hline \end{gathered}$	0	$\begin{array}{\|c\|} \hline 20 \\ 0.787 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 27 \\ 1.063 \\ \hline \end{array}$
GX-330	0	$\begin{gathered} \varnothing 30 \\ \varnothing 1.181 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 40 \\ 1.575 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45 \\ 1.772 \\ \hline \end{array}$	0	$\begin{gathered} \nsubseteq 30 \\ \varnothing 1.181 \\ \hline \end{gathered}$	0	$\begin{array}{\|c\|} \hline 40 \\ 1.575 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45 \\ 1.772 \\ \hline \end{array}$
G	0	$\begin{array}{\|c\|} \hline \varnothing 8 \\ \varnothing 0.315 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.5 \\ 0.177 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 12 \\ 0.472 \\ \hline \end{array}$	0	$\begin{array}{c\|} \hline \varnothing 8 \\ \varnothing 0.315 \\ \hline \end{array}$	0	$\begin{array}{\|c\|} \hline 4.5 \\ 0.177 \\ \hline \end{array}$	$\begin{gathered} 12 \\ 0.472 \\ \hline \end{gathered}$
GX-31	0	$\begin{gathered} \not \varnothing 18 \\ \varnothing 0.709 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 0.472 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 18 \\ 0.709 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.4 \\ 0.094 \\ \hline \end{array}$	$\begin{gathered} \not \varnothing 18 \\ \varnothing 0.709 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.4 \\ 0.094 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12 \\ 0.472 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 18 \\ 0.709 \\ \hline \end{array}$
GX-318	0	$\begin{gathered} \varnothing 27 \\ \varnothing 1.063 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 24 \\ 0.945 \\ \hline \end{array}$	$\begin{gathered} \hline 27 \\ 1.063 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 3.6 \\ 0.142 \\ \hline \end{array}$	$\begin{gathered} \varnothing 27 \\ \varnothing 1.063 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.6 \\ 0.142 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 24 \\ 0.945 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 27 \\ 1.063 \\ \hline \end{array}$
GX-330M	0	$\begin{array}{\|r\|} \hline \varnothing \\ \varnothing 1 \end{array}$	$\begin{array}{c\|} \hline 45 \\ 1.772 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45 \\ 1.772 \\ \hline \end{array}$	$\begin{gathered} 6 \\ 0.236 \\ \hline \end{gathered}$	$\begin{gathered} \varnothing 45 \\ \varnothing 1.772 \end{gathered}$	$\begin{array}{\|c\|} \hline 6 \\ 0.236 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45 \\ 1.772 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45 \\ 1.772 \\ \hline \end{array}$
Model No. (Non-shielded type)	Mounting method A				Mounting method B				
	F	G	H		J	G	K	H	
GX-308ML	$\begin{array}{\|c\|} \hline 6 \\ 0.236 \\ \hline \end{array}$	$\begin{gathered} \varnothing 24 \\ \varnothing 0.945 \\ \hline \end{gathered}$	0.315	0.945	0.236	$\begin{array}{c\|} \hline \varnothing 24 \\ \varnothing 0.945 \\ \hline \end{array}$	$\begin{gathered} 6 \\ 0.236 \\ \hline \end{gathered}$	0.315	$\begin{gathered} 24 \\ 0.945 \end{gathered}$
GX-312ML	$\begin{array}{\|c\|} \hline 11 \\ 0.433 \\ \hline \end{array}$	$\begin{gathered} \varnothing 40 \\ \varnothing 1.575 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 20 \\ 0.787 \\ \hline \end{array}$	1.417	$\begin{array}{\|c\|} \hline 15 \\ 0.591 \\ \hline \end{array}$	$\begin{gathered} \varnothing 40 \\ \varnothing 1.575 \end{gathered}$	$\begin{gathered} 15 \\ 0.591 \end{gathered}$	$\begin{array}{\|c\|} \hline 20 \\ 0.787 \\ \hline \end{array}$	$\begin{gathered} 36 \\ 1.417 \end{gathered}$
GX-318ML	$\begin{array}{\|c\|} \hline 18 \\ 0.709 \\ \hline \end{array}$	$\varnothing 55$ $\varnothing 2.165$	$\begin{array}{c\|} \hline 40 \\ 1.575 \\ \hline \end{array}$	$\begin{gathered} 54 \\ 2.126 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 22 \\ 0.866 \\ \hline \end{array}$	$\begin{gathered} \varnothing 55 \\ \varnothing 2.165 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 22 \\ 0.866 \\ \hline \end{array}$	1.575	2.126
GX-330ML	$\begin{array}{\|c\|} \hline 25 \\ \hline 0.984 \\ \hline \end{array}$	$\begin{gathered} \varnothing 90 \\ \varnothing 3.543 \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ 2.756 \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ 3.543 \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ 1.181 \end{gathered}$	$\begin{gathered} \varnothing 90 \\ \varnothing 3.543 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 30 \\ 1.181 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 70 \\ 2.756 \\ \hline \end{array}$	3.543
GX-308MLK	$\begin{array}{\|c\|} \hline 9 \\ 0.354 \\ \hline \end{array}$	$\begin{gathered} \varnothing 24 \\ \varnothing 0.945 \end{gathered}$	0.315	$\begin{gathered} 24 \\ 0.945 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 0.472 \\ \hline \end{gathered}$	$\begin{gathered} \varnothing 24 \\ \varnothing 0.945 \end{gathered}$	$\begin{array}{\|c\|} \hline 12 \\ 0.472 \\ \hline \end{array}$	0.315	0.945
GX-312MLK	$\begin{array}{\|c\|} \hline 11 \\ 0.433 \\ \hline \end{array}$	$\begin{gathered} \varnothing 40 \\ \varnothing 1.575 \end{gathered}$	$\begin{gathered} 20 \\ 0.787 \end{gathered}$	$\begin{array}{c\|} \hline 40 \\ 1.575 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ 0.591 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \varnothing 40 \\ \varnothing 1.575 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ 0.591 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 20 \\ 0.787 \end{array}$	1.575
GX-318MLK	$\begin{array}{\|c\|} \hline 21 \\ 0.827 \\ \hline \end{array}$	$\begin{gathered} \varnothing 70 \\ \varnothing 2.756 \end{gathered}$	1.890	$\begin{gathered} 70 \\ 2.756 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \\ 0.984 \\ \hline \end{array}$	$\begin{gathered} \varnothing 70 \\ \varnothing 2.756 \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \\ 0.984 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 48 \\ 1.890 \\ \hline \end{array}$	2.756
GX-330MLK	$\begin{array}{\|c\|} \hline 40 \\ 1.575 \\ \hline \end{array}$	$\begin{gathered} \varnothing 120 \\ \varnothing 4.724 \end{gathered}$	$\begin{gathered} 90 \\ 3.543 \end{gathered}$	$\begin{gathered} 120 \\ 4.724 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 45 \\ 1.772 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \varnothing 120 \\ \varnothing 4.724 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45 \\ 1.772 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 90 \\ 3.543 \\ \hline \end{array}$	$\begin{gathered} 120 \\ 4.724 \\ \hline \end{gathered}$

Mutual interference

- When two or more sensors are installed in parallel or face to face, keep the minimum separation distance specified below to avoid mutual interference

Model No. (Shielded type)	$\mathrm{L}(\mathrm{mm} \mathrm{in})$	$\mathrm{M}(\mathrm{mm}$ in)
GX-303S	200.787	150.591
GX-304S	200.787	150.591
GX-305S	200.787	150.591
GX-305M	200.787	150.591
GX-308M(K)	200.787	150.591
GX-312M(K)	301.181	200.787
GX-318M	501.969	351.378
GX-318MK	602.362	351.378
GX-330M	1003.937	702.756
GX-330MK	1104.331	903.543
Model No. (Non-shielded type)	$\mathrm{L}(\mathrm{mm}$ in)	$\mathrm{M}(\mathrm{mm}$ in)
GX-308ML(K)	803.150	602.362
GX-312ML(K)	1204.724	1003.937
GX-318ML	2007.874	1104.331
GX-318MLK	2007.874	1204.724
GX-330ML	30011.811	2007.874
GX-330MLK	35013.780	30011.811

Timing chart

	Operation Mode	Non-sensing area	Sensing area	Proximity Sensor \square 0	
		Sensing object			
		(\%)			
Standard I/O mode (SIO) (Note 1)	N.O.			ON OFF ON OFF ON OFF	Communication indicator (Green)
					Operation indicator (Orange) OUT
	N.C.			ON OFF ON OFF ON OFF	Communication indicator (Green) Operation indicator (Orange) OUT
IO-Link communication mode (COM) (Note 2)	N.O.		CH	Flashing (1 sec cycle) ON OFF ON OFF	Communication indicator (Green) Operation indicator (Orange) OUT
	N.C.			Flashing (1 sec cycle) ON OFF ON OFF	Communication indicator (Green) Operation indicator (Orange) OUT

Notes: 1) When sensors that are not compatible with IO-Link are used or when IO-Link compatible models are used as ordinary sensors, they operate in the standard I/O mode (SIO mode).
2) The operation mode can be changed by the IO-Link communications. The timer function of the output can be set up by the IO-Link communications.

PRECAUTIONS FOR PROPER USE

Others

- This product has been developed / produced for industrial use only.
- Do not install the product in the following locations. Doing so may result in product failure or malfunction.
- Outdoor locations directly subject to sunlight, rain, snow, water droplets, or oil.
- Locations subject to atmospheres with chemical vapors, in particular solvents and acids.
- Locations subject to corrosive gases.
- The product may malfunction if used near ultrasonic cleaning equipment, high-frequency equipment, transceivers, cellular phones, inverters, or other devices that generate a high-frequency electric field.
- Laying the product wiring in the same conduit or duct as high-voltage wires or power lines may result in incorrect operation and damage due to induction. Wire the product using a separate conduit or independent conduit.
- The following conditions shall be observed if you use the product under an environment using cutting oil that may affect product's life and/or performance.
- Usage in oil or water is prohibited.
- Impact on the product life may differ depending on the oil you use. Before using the cutting oil, make sure that it should not cause deterioration or degradation of sealing components.
- Never use thinner or other solvents. Otherwise, the product surface may be dissolved.
- When turning ON the power by influence of temperature environment, an output mis-pulse sometimes occurs. After the product has passed for 300 ms after turning ON, please use in the stable state. If the sensing object is located near the sensor's sensing surface, an output mis-pulse may be generated for 300 ms or longer at the time of power-on. Be sure to check the product for proper operation under actual operating condition before using.
- The product is adjusted with a high degree of accuracy, so do not use in the environment with sudden temperature change.
- Do not attempt to disassemble, repair, or modify the product.
- Do not use a voltage that exceeds the rated operating voltage range. Applying a voltage that is higher than the operating voltage range may result in damage or burnout.
- Be sure that the power supply polarity and other wiring is correct. Incorrect wiring may cause explosion or burnout.
- If the power supply is connected directly without a load, the internal elements may explode or burn. Be sure to insert a load when connecting the power supply.
- Please use gloves to protect yourself from injury caused by screw.
- For the connector type and pigtailed type, check the specifications of the connector cable to be used. Please do not use it under conditions that exceed the range of its specifications of both the product and the connector cable.
- Please make sure there is no foreign matter in connector part before connecting the connector cable to the connector type and pigtailed type.
- In the IO-Link mode, the cable between the IO-Link master and sensor must have a length of 20 m 65.617 ft or less.

Sensor

Sensor

GX-305S-■

Cable type / Pigtailed type

< Pigtailed type >

I	Shielded type									
Model N	A	B	C	D	E	F	G	H	1	J
GX-308M(K)	$\begin{array}{c\|} \hline \text { M8 } \times 1 \\ M 8 \times 0.039 \end{array}$	$\begin{array}{\|l\|} \hline 37.8 \\ 1.488 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.4 \\ 0.173 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 26 \\ 1.024 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 10 \\ 0.394 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ \hline 0.157 \\ \hline \end{array}$	$\begin{gathered} \hline 3 \\ 0.118 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ 0.591 \\ \hline \end{array}$	$\begin{gathered} 13 \\ 0.512 \\ \hline \end{gathered}$
GX-312M(K)	$\begin{array}{\|c\|} \hline \mathrm{M} 12 \times 1 \\ \mathrm{M} 12 \times 0.039 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 47.1 \\ 1.854 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.7 \\ 0.146 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 33 \\ 1.299 \end{array}$	-	$\begin{gathered} 12 \\ 0.472 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ 0.157 \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ \hline 0.157 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21 \\ 0.827 \\ \hline \end{array}$	$\begin{gathered} 17 \\ 0.669 \\ \hline \end{gathered}$
GX-318M(K)	$\begin{array}{c\|} \hline \text { M18 } \times 1 \\ \text { M18 } \times 0.039 \end{array}$	$\begin{array}{\|l\|} \hline 55.3 \\ \hline 2.177 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.5 \\ 0.335 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 38 \\ 1.496 \end{array}$		$\begin{gathered} 12 \\ 0.472 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ 0.157 \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ \hline 0.157 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 29 \\ 1.142 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 24 \\ 0.945 \\ \hline \end{array}$
GX-330M(K)	$\begin{array}{\|c\|} \hline \text { M30 } \times 1.5 \\ \text { M30 } \times 0.059 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 60.3 \\ 2.374 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.3 \\ 0.327 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 43 \\ 1.693 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 12 \\ 0.472 \\ \hline \end{array}$	$\begin{gathered} \hline 4 \\ 0.157 \end{gathered}$	$\begin{array}{\|c\|} \hline 5 \\ 0.197 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 42 \\ 1.654 \\ \hline \end{array}$	$\begin{gathered} \hline 36 \\ 1.417 \\ \hline \end{gathered}$

Symbol	Non-shielded type									
Model No.	A	B	C	D	E	F	G	H	I	J
GX-308ML(K)	$\begin{gathered} M 8 \times 1 \\ M 8 \times 0.039 \end{gathered}$	$\begin{array}{\|l\|} \hline 37.8 \\ 1.488 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.4 \\ 0.173 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 26 \\ 1.024 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ 40.236 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ \hline 0.315 \\ \hline \end{array}$	-	$\begin{gathered} 3 \\ 0.118 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 15 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 13 \\ \hline 0.512 \\ \hline \end{array}$
GX-312ML(K)	$\begin{gathered} \mathrm{M} 12 \times 1 \\ \mathrm{M} 12 \times 0.039 \end{gathered}$	$\begin{array}{\|c\|} \hline 47.1 \\ 1.854 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.7 \\ 0.146 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 33 \\ \hline 1.299 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7 \\ 0.276 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ 0.394 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 4 \\ 0.157 \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} 21 \\ 0.827 \end{gathered}\right.$	$\begin{array}{c\|c} 17 \\ 0.669 \\ \hline \end{array}$
GX-318ML(K)	$\begin{gathered} \mathrm{M} 18 \times 1 \\ \text { M18 } \times 0.039 \end{gathered}$	$\begin{array}{\|c\|} \hline 55.3 \\ 2.177 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.5 \\ 0.335 \\ \hline \end{array}$	$\begin{gathered} 38 \\ 1.496 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 0.394 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ \hline 0.394 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 4 \\ 0.157 \\ \hline \end{array}$	$\begin{gathered} 29 \\ 1.142 \end{gathered}$	$\begin{gathered} 24 \\ 0.945 \end{gathered}$
GX-330ML	$\begin{gathered} \text { M30 } \times 1.5 \\ \text { M30 } \times 0.059 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 60.3 \\ 2.374 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.3 \\ 0.327 \\ \hline \end{array}$	$\begin{gathered} 43 \\ 1.693 \end{gathered}$	$\begin{array}{c\|} 13 \\ \hline 0.512 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 10 \\ 0.394 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 5 \\ 0.197 \\ \hline \end{array}$	$\begin{gathered} 42 \\ 1.654 \end{gathered}$	$\begin{gathered} 36 \\ 1.417 \\ \hline \end{gathered}$
GX-330MLK	$\begin{gathered} \text { M30 } \times 1.5 \\ \text { M30 } \times 0.059 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 82.3 \\ 3.240 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.3 \\ \|0.327\|_{2} \\ \hline \end{array}$	$\begin{gathered} 65 \\ 2.559 \\ \hline \end{gathered}$	$\begin{array}{c\|} 15 \\ 0.591 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ \hline 0.394 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 5 \\ 0.197 \\ \hline \end{array}$	$\begin{gathered} 42 \\ 1.654 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ 1.417 \\ \hline \end{gathered}$

Connector type

Symbol	Shielded type									
Model No.	A	B	C	D	E	F	G	H	1	J
GX-312M(K)	$\begin{gathered} \mathrm{M} 12 \times 1 \\ \mathrm{M} 12 \times 0.039 \end{gathered}$	$\begin{gathered} \hline 48 \\ 1.890 \\ \hline \end{gathered}$	M12 $\times 1$ M1 2×0.039	$\begin{array}{\|c\|} \hline 33 \\ 1.299 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 12 \\ 0.472 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ 0.157 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ 0.157 \\ \hline \end{array}$	$\begin{gathered} 21 \\ 0.827 \end{gathered}$	$\begin{array}{\|c\|} \hline 17 \\ \hline 0.669 \\ \hline \end{array}$
GX-318M(K)	$\begin{gathered} \text { M18 } \times 1 \\ \text { M18 } \times 0.039 \end{gathered}$	$\begin{gathered} \hline 53 \\ 2.087 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 12 \times 1 \\ \mathrm{M} 12 \times 0.039 \end{gathered}$	$\begin{array}{\|c\|} \hline 38 \\ 1.496 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 12 \\ 0.472 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 4 \\ 0.157 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ 0.157 \\ \hline \end{array}$	$\begin{gathered} 29 \\ 1.142 \end{gathered}$	$\begin{array}{\|c\|} \hline 24 \\ 0.945 \\ \hline \end{array}$
GX-330M(K)	$\begin{array}{\|c\|} \hline \text { M30 } \times 1.5 \\ \text { M30 } \times 0.059 \end{array}$	$\begin{gathered} \hline 58 \\ \hline 2.283 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 12 \times 1 \\ \mathrm{M} 12 \times 0.039 \end{gathered}$	$\begin{array}{\|c\|} \hline 43 \\ 1.693 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 12 \\ 0.472 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ 0.157 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 0.197 \\ \hline \end{gathered}$	$\begin{gathered} 42 \\ 1.654 \end{gathered}$	$\begin{array}{\|c\|} \hline 36 \\ 1.417 \\ \hline \end{array}$

	Non-shielded type									
Model No.	A	B	C	D	E	F	G	H	1	J
GX-312ML(K)	$\begin{gathered} \mathrm{M} 12 \times 1 \\ \mathrm{M} 12 \times 0.039 \end{gathered}$	$\begin{array}{\|c\|} \hline 48 \\ 1.890 \\ \hline \end{array}$	$\begin{gathered} \mathrm{M} 12 \times 1 \\ \mathrm{M} 12 \times 0.039 \end{gathered}$	$\begin{array}{\|c\|} \hline 33 \\ 1.299 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7 \\ \hline 0.276 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ \hline 0.394 \\ \hline \end{array}$	-	$\begin{gathered} 4 \\ 0.157 \end{gathered}$	$\begin{array}{\|c\|} \hline 21 \\ 0.827 \\ \hline \end{array}$	$\begin{gathered} 17 \\ \hline 0.669 \end{gathered}$
GX-318M	$\begin{gathered} \mathrm{M} 18 \times 1 \\ \mathrm{M} 18 \times 0.039 \end{gathered}$	$\begin{array}{\|c\|} \hline 53 \\ 2.087 \\ \hline \end{array}$	$\begin{gathered} \mathrm{M} 12 \times 1 \\ \mathrm{M} 12 \times 0.039 \end{gathered}$	$\begin{array}{\|c\|} \hline 38 \\ \hline 1.496 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 10 \\ \hline 0.394 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ 40.394 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 4 \\ 0.157 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 29 \\ \hline 1.142 \\ \hline \end{array}$	$\begin{gathered} 24 \\ 20.945 \\ \hline \end{gathered}$
GX-330ML	$\begin{gathered} \text { M30 } \times 1.5 \\ \text { M } 30 \times 0.059 \end{gathered}$	2.283	$\text { M12 } \times 0.039$	$\begin{array}{\|c\|} \hline 43 \\ 1.693 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13 \\ 0.512 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 10 \\ \hline 0.394 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline 5 \\ 0.197 \end{array}$	$\begin{array}{\|c\|} \hline 42 \\ \hline 1.654 \\ \hline \end{array}$	$\begin{gathered} 36 \\ \hline 1.417 \\ \hline \end{gathered}$
GX-330MLK	$\begin{gathered} \text { M30 } \times 1.5 \\ \text { M30 } 0.059 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 80 \\ 3.150 \\ \hline \end{array}$	$\begin{gathered} \mathrm{M} 12 \times 1 \\ \mathrm{M} 12 \times 0.039 \end{gathered}$	$\begin{array}{c\|} \hline 65 \\ 2.559 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ 0.591 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 10 \\ \hline 10.394 \\ \hline \end{array}$	-	$\begin{gathered} \hline 5 \\ 0.197 \end{gathered}$	$\begin{array}{\|c\|} \hline 42 \\ \hline 1.654 \\ \hline \end{array}$	$\begin{gathered} 36 \\ 4.417 \\ \hline \end{gathered}$

Note: M8 type models are not available in the connector type.

Panasonic Corporation

